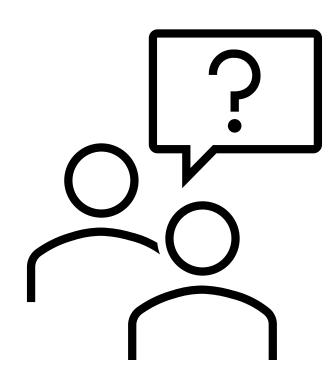

Blended Cement and New SCMs: The pathway to success


Matt Spencer & Cheng Qi Ash Grove/CRH

08-28-25

Presentation Notes

- Find presentation slides and post event recording at:
 - https://www.neuconcrete.org/eventsand-education
- Attendees are in listen only mode.
- Ask questions via the Q&A dialog box in the zoom platform

Disclaimer

As with all concrete mixtures, trial batches should be performed to verify concrete properties. Results may vary due to a variety of circumstances, including temperature and mixture components, among other things.

You should consult your materials, cement, and concrete professionals for design assistance. Nothing contained herein shall be considered or construed as a warranty or guarantee, either expressed or implied, including any warranty of fitness for a particular purpose.

Today's Speaker

Speakers: Matt Spencer

Matt Spencer is the Vice president of Customer Solutions for Ash Grove. In this role Matt is responsible for research and development, new product and technology development and the customer experience. He has spent a 25 year career in the building products industry in a variety of technical and market facing roles. Matt is a graduate of Northwestern University with a MsE.

Cheng Qi

Cheng Qi is the Director of R&D at Ash Grove. He has 20+ years in cement and concrete business, supporting trouble shooting, product development, quality excellence and sustainability advancements. Cheng graduated from Purdue University with a PhD specializing in cement and concrete materials.

Introducing CRH

CRH is
the leading
building materials
business in
the world

- CRH manufactures and supplies a range of integrated building materials, products and innovative end-to-end solutions for the construction industry
- CRH products can be found throughout the built environment from major public infrastructure to homes and commercial buildings
- CRH has a long standing and proven commitment to sustainability and is ranked among sector leaders by Environmental, Social and Governance (ESG) rating agencies
- Our materials, value-added products and building solutions play an important role in shaping a more sustainable built environment
- CRH has been included in the Fortune Global 500 list for 20 consecutive years

CRH VALUES

PEOPLE are our priority

We build enduring relationships and we care for each other's safety and well-being

CHARACTER is our strength

We do what we say, we live by our word and we collaborate to deliver as one team

PERFORMANCE is our commitment

We achieve impact globally through local delivery, entrepreneurial drive and environmental stewardship

INNOVATION is our way forward

We strive to shape the next generation of sustainable building materials and solutions

From small beginnings to a global leader

1970 95% in Ireland 51 millions in Sales **5350 Employees**

*CRH Sustainability Performance Report 2024

CRH's products portfolio

Products & Services Pipe & Lime Cement **RMC Aggregates Precast Asphalt** Constr. **Composite Outdoor** Constr. **Products** Access. **Services** Livina

Our approach to integrated solutions

- Uniquely integrating materials, products & services across the value chain & construction lifecycle
- Collaborating with customers to develop more value-added solutions & building practices

Our aspirations

Become best in class partner in the Construction Value Chain driving value through innovative sustainable solutions, which address present and future customer pain points

Introducing Ash Grove

1882

Ash Grove White Lime Association incorporated in Ash Grove, Missouri to produce lime for construction and sanitary uses.

First cement plant

1951

St. Lawrence Cement builds cement plant in Quebec for construction of the St. Lawrence Seaway.

1960s and 1970s

Modernization and expansion of Chanute and Louisville plants.

1983

Acquisition of cement plant in Durkee, Oregon.

1984

Acquisition of cement plant in Seattle, Washington.

1987

Acquisition of cement plant in Montana City, Montana.

1992

Modernization and expansion of Seattle Plant.

2000S

Modernization and expansion of Chanute and Foreman plants.

2015

CRH acquires Holcim (Canada).

CRH Canada and Suwannee American Cement adopt the Ash Grove brand.

1908

1929

Second cement plant built in Louisville, Nebraska

1956

Second cement plant built in Mississauga. Ontario to serve Canada's largest market.

1976

Acquisition of cement plant in Jollette, Quebec.

1985

Acquisition of cement plant in Foreman, Arkansas.

1989

Acquisition of cement plant in Leamington, Utah.

1994 Acquisition of cement plant in Midlothian, Texas.

2009

St. Lawrence Cement rebrands to Holcim (Canada) Inc.

2018

CRH acquires Ash Grove Cement.

CRH acquires Suwannee American Cement.

Introducing Ash Grove

WE STAND TOGETHER TO REINVENT THE WAY OUR WORLD IS BUILT

- For over 143 years, we have provided cementitious materials to construct the highways, bridges, commercial and industrial complexes, homes, and other structures fundamental to the nation's economic vitality and quality of life.
- Ash Grove is known for quality, reliability, and a commitment to safety

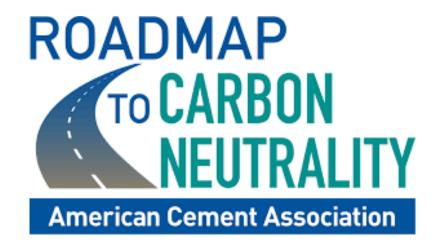
Delivering through priority areas

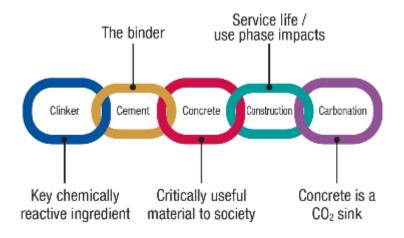
Aligned to our sustainability framework & industry challenges

Taking the lead on decarbonization

- Long track record of industry-leading emissions reduction
- Raising our ambition & accelerating our efforts with best-in-class new target
- 30% absolute reduction in group-wide emissions by 2030 (on a 2021 baseline) ... the only metric that matters
- Target covers Scope 1, Scope 2 and Scope 3
- SBTi validated & aligned with ambition to be carbon neutral by 2050

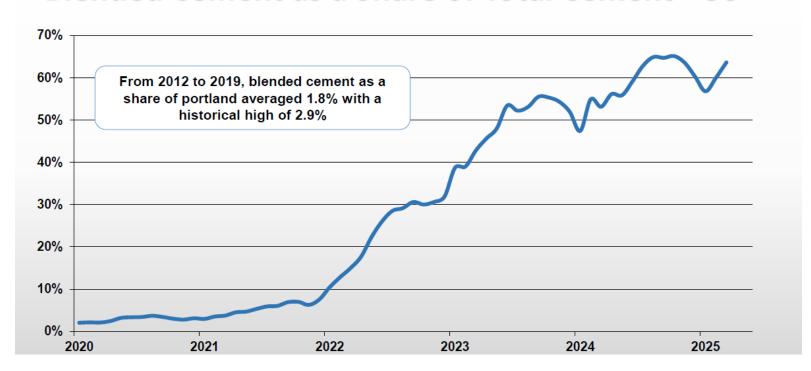
A dedicated Innovation Fund to be invested on internal projects and external partnerships


CRHVENTURES


The Corporate Venture Capital arm of CRH to partner and invest in start-ups

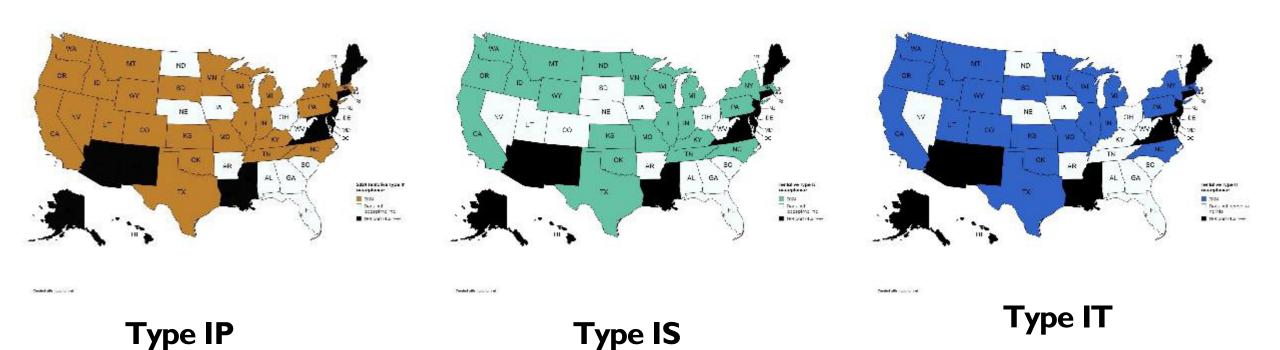
Blended cement and SCMs, where are we at?

Blended cements provide immediate opportunities


Carbon neutrality requires increased acceptance and adoption of all blended cements

*Adapted from Jamie Farny (ACA) presentation at Spring 2025 NCC, "Blended Cements Survey of NCC Member State DOTs" Contact: ifarny@cement.org

Blended cements are making the real impact


Blended Cement as a Share of Total Cement - US

Blended cements had DOTs' blessing

*Adapted from Jamie Farny (ACA) presentation at Spring 2025 NCC, "Blended Cements Survey of NCC Member State DOTs" Contact: jfarny@cement.org

Traditional & new SCMs: the enablers for blended cements

Coal Fired Power Plant

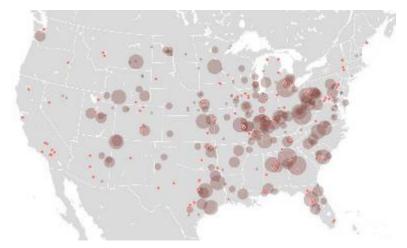
Steel Blast Furnace

Reactors

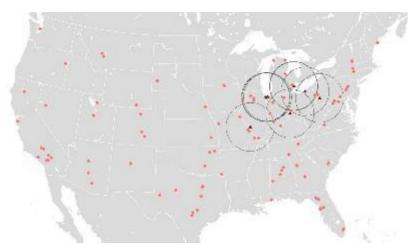
Traditional Supplementary Cementitious Materials

Inorganic materials that contribute to the properties of a cementitious mixture through hydraulic or pozzolanic activity, or both

New SCMs


- Different feedstock, process, activation mechanism
- Requires a new performance-based standard to evaluate suitability in cement and concrete
 - o Focus on performance, not prescription
 - Advocate sustainability benefits

Impact of Cement Content and SCMs on CO₂ per Cubic Yard of Concrete


Cementitious lbs/yd³	% SCM	CO ₂ lbs/yd ³
564	0	527
470	0	442
376	0	356
564	25	404
470	25	351
376	25	271
564	50	282
470	50	234
376	50	190

Geographic distribution of SCMs

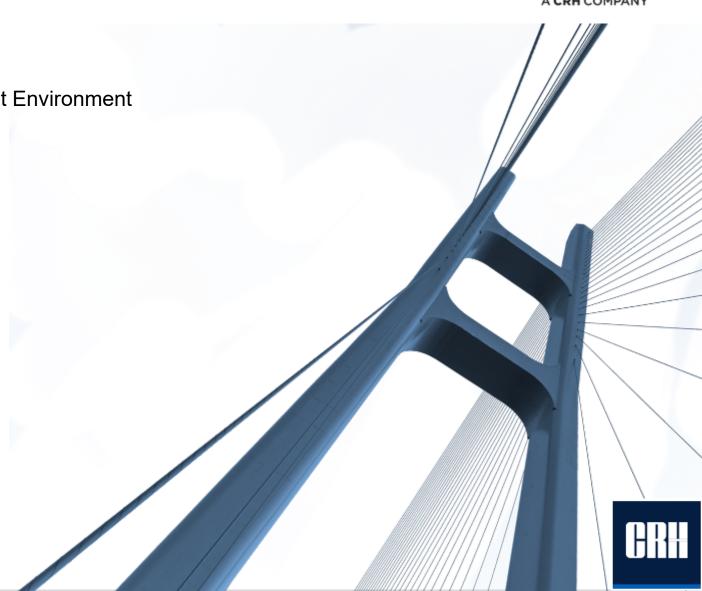
Coal ash production



Slag production

NP deposits

*Adapted from Jamie Farny (ACA) presentation at Spring 2025 NCC, "Blended Cements Survey of NCC Member State DOTs" Contact: ifarny@cement.org



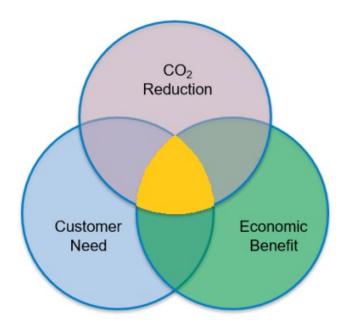
Pathway for blended cements success

- Prioritize Sustainability and Resilience in the Built Environment
- Adopt Performance-Based Specifications
- Optimize Concrete Mix Designs
- Invest in Training & Workforce Skills
- Demonstrate Successful Projects
- Collaborate across Supply Chains

Choose the right opportunities to pursue

A lot to unpack...

- How will it improve our products for our customers?
- Is there a specification it could fit in?
- How does it perform in concrete?
- How much is available?
- How much will it cost?
- Can the plant infrastructure handle the material or is major CX required?
- And many, many others...
- ✓ Logistics
- ✓ Storage & discharge constraints
- Drying and milling process

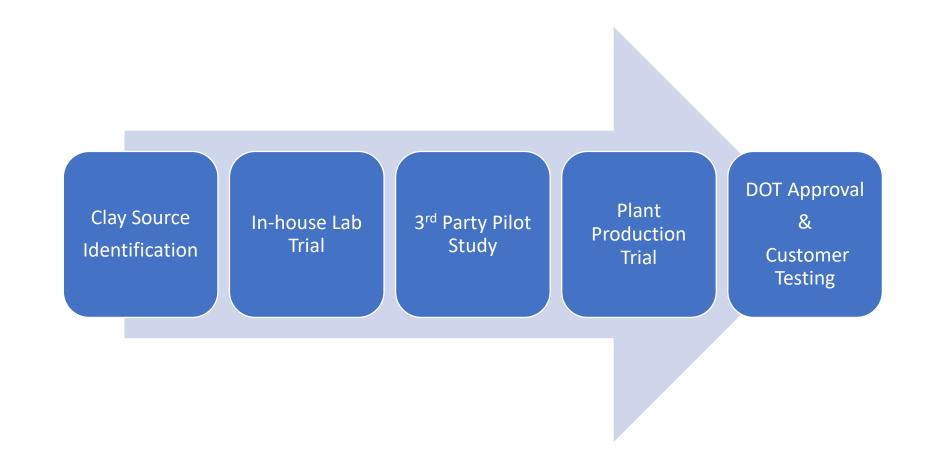


Choose the right opportunities to pursue

Follow Product Development Stage Gate Process

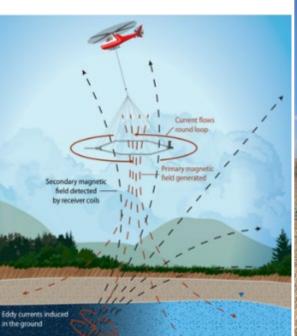
- Hydration process
- Additive and admixture uses
- Product uniformity
- QC/QA practices
- Fresh concrete properties
- Hardened concrete properties
- Field construction practice changes
- Additional training and technical support

Solutions to customer pain points

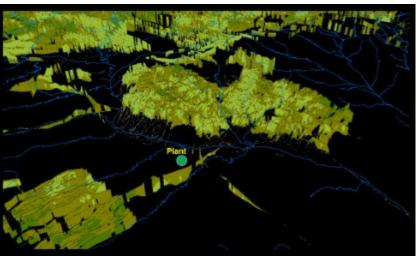

- ASH GROVE
 - A CRH COMPANY

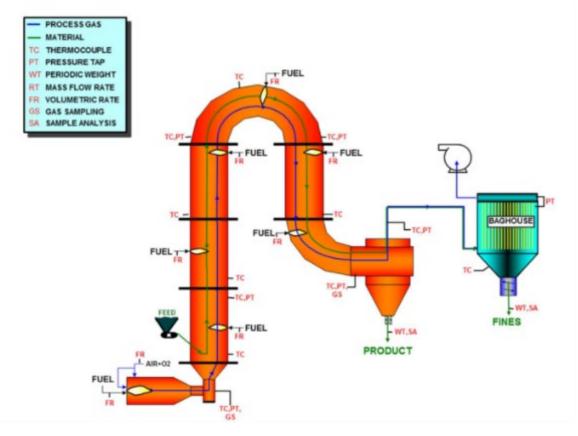
- In the 1990's, the Nebraska Department of Transportation experienced these...
 - Cements with high alkali levels
 - Local reactive sand & gravels
 - Non-reactive aggregates were not readily available
- Ash Grove actions
 - Experimented with various supplementary cementitious materials to mitigate ASR
 - Conducted extensive research and pilot projects
 - 1993, Ash Grove, in conjunction with the NDOT, developed an inter-ground blended cement providing successful ASR mitigation solution
- Outcomes
 - NDOT specified blended cements for all paving projects

Calcined clay: product development process



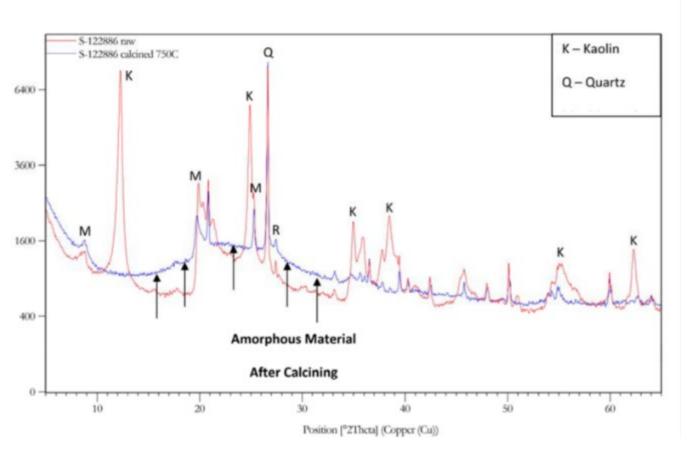



Understanding the reserves



Low-grade, locally sourced clay when properly calcined delivers excellent strength and durability performances

Identifying the right process choices



Fine tuning the clay calcination/dehydroxalation process

*Ash Grove product development data

Embracing the challenges

Working out the right solutions

- 1. Type I/II cement
- 2. 30% calcined clay
- 3. 30% color managed calcined clay

Calcined clay: strength and durability solutions

	Doto	Diameter	Loueth	Area	Mass,	Load	Cteranoth	Transf	A
	Date	Diameter,		Area,		Load,	Strength,	Type of	Age,
Sample ID	<u>Tested</u>	<u>in. (mm)</u>	<u>in. (mm)</u>	in.2 (cm2)	lbs. (kg)	<u>lbf. (N)</u>	psi (Mpa)	Fracture	days
D-122120-2	12/28/20	4.00	8.10	12.57	8.52	67,600	5,379	Type I	7
47B mix		(101.6)	(205.7)	(81.1)	(3.9)	(300,700)	(37.1)		
	12/28/20	4.00	8.06	12.57	8.47	66,580	5,298	Type I	7
		(101.6)	(204.7)	(81.1)	(3.9)	(296,163)	(36.5)		
						Average	5,340		
	01/18/21	4.01	8.08	12.63	8.48	87,530	6,931	Type I	28
		(101.9)	(205.2)	(81.5)	(3.9)	(389,353)	(47.8)		
	01/18/21	4.00	8.10	12.57	8.53	88,120	7,012	Type I	28
		(101.6)	(205.7)	(81.1)	(3.9)	(391,977)	(48.4)		
	01/18/21	4.00	8.07	12.57	8.50	92,160	7,334	Type I	28
		(101.6)	(205.0)	(81.1)	(3.9)	(409,948)	(50.6)		
						Average	7,090		
	02/15/21	4.01	8.05	12.63	8.51	97,950	7,756	Type I	56
		(101.9)	(204.5)	(81.5)	(3.9)	(435,703)	(53.5)		
						Average	7,760		
	03/22/21	4.01	8.10	12.63	8.49	95,380	7,552	Type I	91
		(101.9)	(205.7)	(81.5)	(3.9)	(424,271)	(52.1)		
						Average	7,550		

ASTM C1202	- Electrical Indica	tion of Concret	e's Ability to Resis	t Chloride Ion Pe	enetration	
Standard Curi	ing					
		Charge	Corrected	Qualitative	Date	
Sample No.	Diameter, mm	Passed, C	Charge, C	Equivalent	of Test	Age, days
D-122120-1	102	1,063	922	Very Low	02/18/2021	59
D-122120-1	102	1,105	959	Very Low	02/18/2021	59
D-122120-1	102	1,049	910	Very Low	02/18/2021	59
no admixtures	0.50 w/cm	Average	930	Very Low		
D-122120-2	102	756	656	Very Low	02/18/2021	59
D-122120-2	102	873	757	Very Low	02/18/2021	59
D-122120-2	102	676	586	Very Low	02/18/2021	59
47B mix	_	Average	666	Very Low	-	

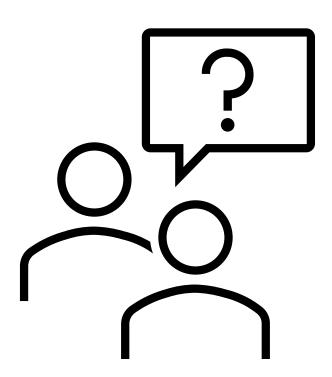
Demonstrating successful projects

Photo Credit: Eric Giannini

PURPOSE

WHY WE EXIST

To develop sustainable solutions that build, connect and improve our World



THANK YOU!

Questions?

Ask questions via the Q&A dialog box in the zoom platform

Thank you!

www.neuconcrete.org

info@neuconcrete.org

- in NEU: An ACI Center of Excellence for Carbon Neutral Concrete
- @NEUCarbonNeutralConcrete
- @NEUconcrete

