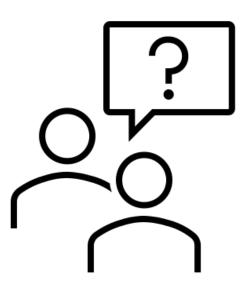
Low-Carbon Concrete: Technologies, Policy, and the Pathway to Model Code Language


Matthew P. Adams, Ph.D., FACI New Jersey Institute of Technology

September 21, 2023

Presentation Notes

- Find presentation slides and post event recording at:
 - https://www.neuconcrete.org/eventsand-education
- Attendees are in listen only mode.
- Ask questions via email at info@neuconcrete.org

Disclaimer

As with all concrete mixtures, trial batches should be performed to verify concrete properties. Results may vary due to a variety of circumstances, including temperature and mixture components, among other things.

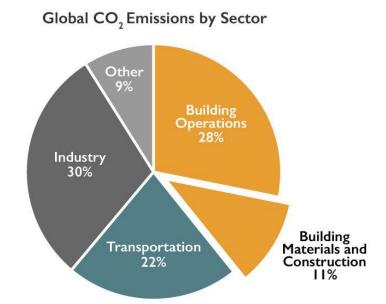
You should consult your materials, cement, and concrete professionals for design assistance. Nothing contained herein shall be considered or construed as a warranty or guarantee, either expressed or implied, including any warranty of fitness for a particular purpose.

Today's Speaker

Matthew P. Adams, Ph.D., FACI

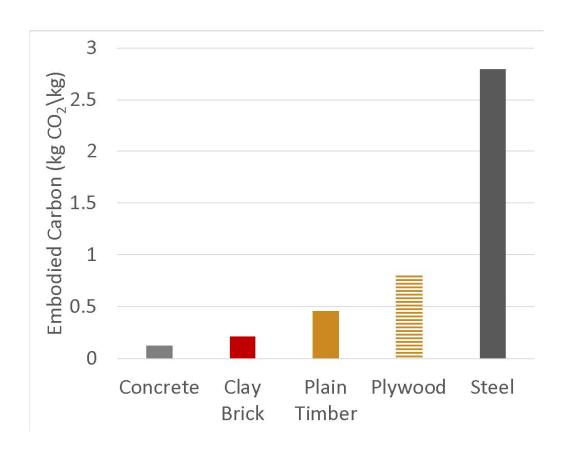
Dr. Matthew Adams is an associate professor and co-director of the materials and structures (MatSLab) at the New Jersey Institute of Technology in Newark, NJ. His research focuses on the sustainability, resiliency, and long-term durability of innovative cement-based materials. He also studies how governmental policies both support and hinder the adoption of sustainable practices in construction. He is a fellow of the American Concrete Institute, where he is currently chairman of ACI 323 Low Carbon Concrete Code Committee and member of several other committees; he is also a member of ASTM, International where he chairs the Subcommittee on Testing for Strength of Concrete. Dr. Adams has received research funding from the Port Authority of New York and New Jersey, New Jersey Department of Transportation, the American Concrete Institute Foundation, and the U.S. Department of Transportation. He received his undergraduate degree from the University of New Hampshire in 2006, and his Master of Science and Ph.D. degrees from Oregon State University in 2012 and 2015, respectively.

Presentation Overview


- 1 Introduction
 - 2 Low-Carbon Concrete Technologies
 - 3 Barriers to Implementation
 - 4 Existing Policy Solutions
 - 5 Effectiveness of Solutions
 - 6 Developing Model Code Language
- 7 Summary

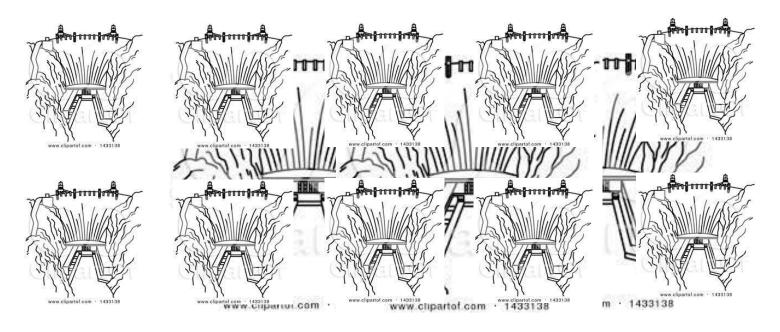
Carbon Production Worldwide

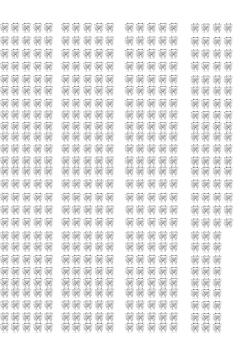
 Building materials and construction account for 11% of global CO₂ emissions


Concrete is responsible for 8% of global
 CO₂ emissions

 Majority of emissions come from cement production and scale of use

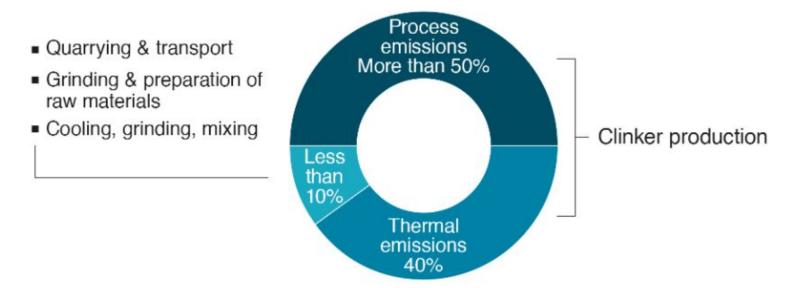
Source: © 2018 2030, Inc. / Architecture 2030. All Rights Reserved. Data Sources: UN Environment Global Status Report 2017; EIA International Energy Outlook 2017

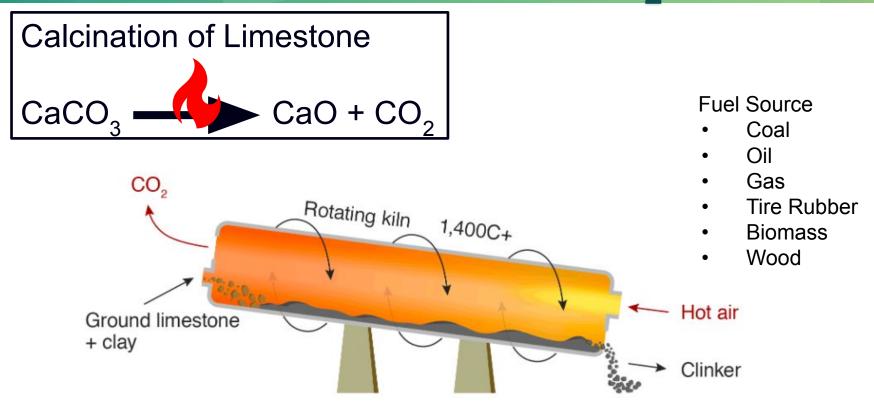

Embodied Carbon of Building Materials


Data source: NRMCA Image: clipartof.com

- Concrete is produced at a massive scale
- US: 404,000,000 yd³

Data source: NRMCA Image: clipartof.com


- Concrete is produced at a massive scale
- US: 404,000,000 yd³


615 Hoover Dams Produced Each Year in the US Alone!

>90% embodied CO₂ in a portland cement mixture is from cement production

Embodied CO₂ Allocation by Cement Production Process

Image courtesy: Chatham House

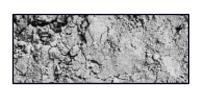
Cement Production Results in Significant CO₂ Production

Technologies for Reducing CO₂

Sequester CO₂

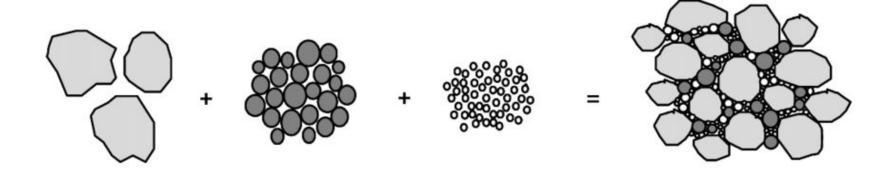
Reduce Cement Content Reduce or CaptureCO₂
 Production At the
 Source

Minimize CO₂ in non-cementitious materials



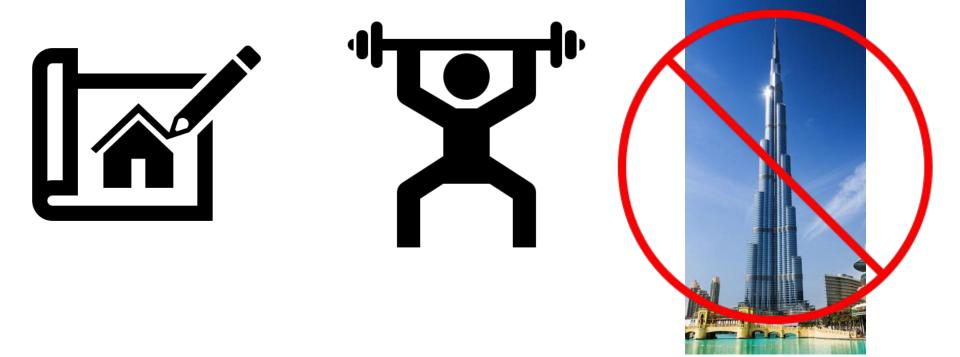
Reducing Cement Content

Cementitious


7 - 15 % Hydraulierials

- Ground limestone

 Cement
- Common Supplementary Cementitious Materials (SCMs)
 - Fly Ash, Slag, Silica Fume
- Newer SCMs
 - Ground glass pozzolan, calcined clay


Reducing Cement Content

- Improved aggregate gradation
 - Improve particle packing
 - Reduce cement content

Reducing Cement Content

DO NOT OVER DESIGN

Reducing or Capture CO₂ at Source

- Modern cement plants are very efficient
- New capture technologies in development

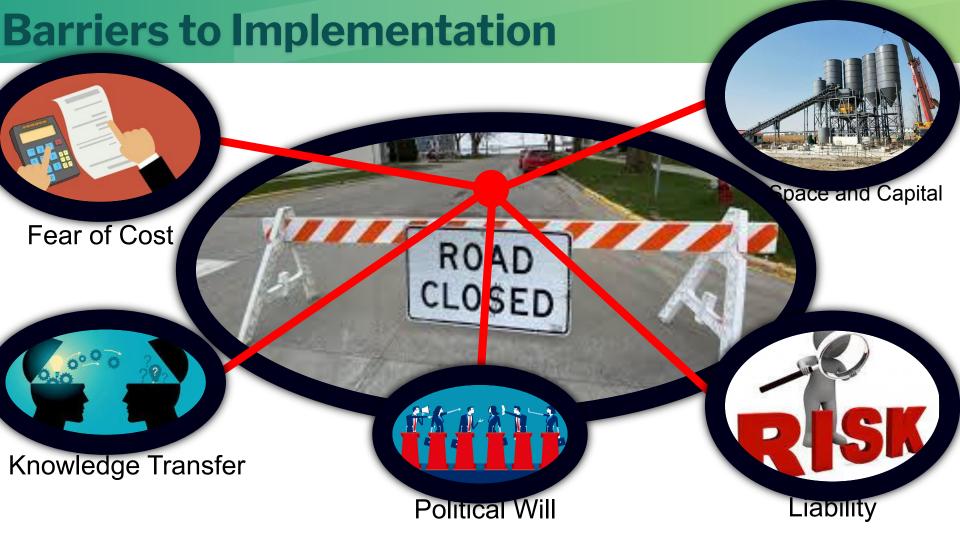
Minimize CO₂ in aggregate component

Minimal impact on overall CO₂

Recycling

Carbon Sequestered
Aggregates

Minimize CO₂ in aggregate component


Minimal impact on overall CO₂

Recycling

Carbon Sequestered
Aggregates

Good Policy Can Save the World!

- Policy work began at the local/state level
- Many non-mandatory resolutions

Resolutions promoting the use of concrete carbon storage technologies. Mainly pushed by private companies

Successful Resolutions

Why was this successful:

- Technology agnostic
- Engaged community stakeholders
- Had leadership involved in both policy development and implementation
- Community involvement working with contractors to transfer knowledge
- Willing to absorb risk

GWP Declaration Policies

- Require contractors to declare global warming potential of mixtures
- No limits (yet?)

Tax Incentives to Contractors

- Contractors that use low GWP mixtures get tax incentives – (8% of total cost of contract)

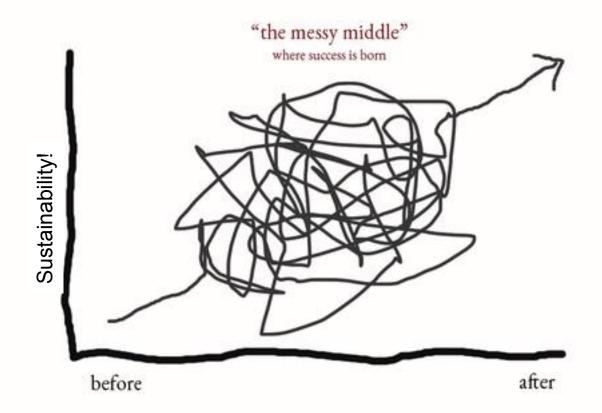
GWP and Cement Limits

- Limits on total cement content and/or GWP based on concrete strength
- Limits based on internal studies of GWP

GWP and Cement Limits

- Limits on total GWP based on concrete strength
- Limit set to 150% of NRMCA Regional Average
 Concrete GWP for Northeast

Federal Programs

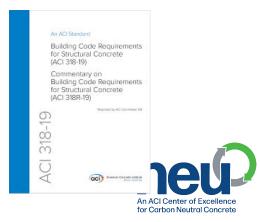


- Requirements for "low-carbon" building materials.
- Multiple avenues for calculations

Progress is MESSY!

stephaniequilao.com

National Level Model Code Guidance is Needed


How to determine the GWP?

What limits to set?

How do GWP limits interact with life-safety codes?

ACI Code Committee 323

Here we come to save the day!

ACI Code Committee 323

- First met April 2023
- Strong cross section of experts
- Expect new code release in mid-2024

Code Development

Category of Construction

Path to Compliance

Limits to be Met

Concrete Strength

Prescriptive
Limitations on
Cement
Content

Limit Cement to 500 lb per cu. yd.

Type and Size of Construction

Determine
Global Warming
Potential of
Mixtures

Limit total
Global Warming
Potential

Code Development – Likely System

Category of Construction

- Type of construction: Bridges, Pavements, Buildings, etc.
- Size of construction (total square footage or volume)

Code Development – Likely System

Path to Compliance

- Determine GWP for each mixture
 - Environmental Product Declaration (EPD)
- Determine weighted GWP for all concrete on project (weighted by volume)

Code Development – Likely System

Limits to be Met

- Limit will be based on NRMCA Regional GWP Benchmarks
- Jurisdictions can also use localized data to set their own limits and benchmarks

Learning Objectives Revisited

- Describe the state of low-carbon concrete policy in the United States
- Discuss the need for model building code language for sustainable concrete
- Describe the current state of technology for low-carbon concrete and the barriers to implentation

Acknowledgements

- MatSLab Research Group
- Rockefeller Institute for Government

- Dr. Andrea Schokker
- Dr. Chris Ferraro
- ACI 323 CommitteeMembers
- ACI and NEU Staff

Thank you!

www.neuconcrete.org

info@neuconcrete.org

in

NEU: An ACI Center of Excellence for Carbon Neutral Concrete

@NEUCarbonNeutralConcrete

@NEUconcrete

