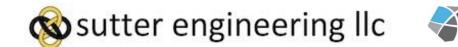

MnROAD Field Demonstration of Alternative Materials for Concrete

Larry Sutter Ph.D., P.E., F.ACI, F.ASTM

Professor Emeritus and Research Professor Materials Science & Engineering Michigan Technological University, Houghton MI

Principal Engineer Sutter Engineering LLC Houghton MI 49931

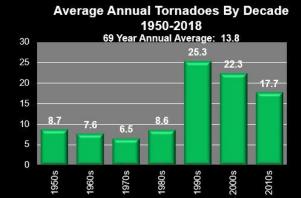

Where is the industry going?

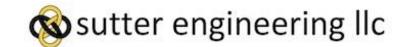
- Sustainability Carbon neutral by 2050
- Because...

There's something happening here What it is ain't exactly clear

Stephen Stills, Buffalo Springfield, 1966

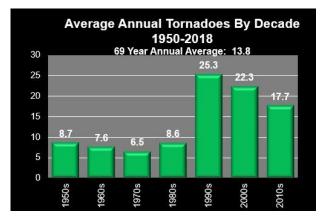
You may have "highly informed" explanations or just disagreee...





"Tornados are not more common; they're overhyped. They just send out news crews like lice on a dog!"

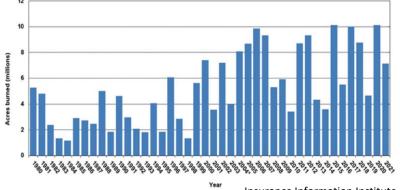
Scott Olson, Getty Images


DEPARTMENT OF TRANSPORTATION National Weather Service

"Tornados are not more common; they're overhyped. They just send out news crews like lice on a dog!"

Scott Olson, Getty Images

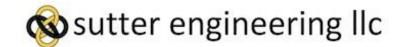
National Weather Service



LA Times

Noah Berger, AP Photo

Annual Number of Acres Burned in Wildland Fires, 1980-2021

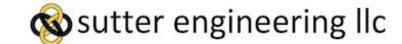


Insurance Information Institute

"It's those tree huggers that won't let us cut any trees!"

John Locher/AP

"Crazy fools that build right on the coast. What do they expect?"


U.S. cumulative billion-dollar climate and weather disasters, by year

As of Oct. 11, 2022; By month the climate event ended

Data: <u>Climate Central</u>, <u>NOAA National Centers for Environmental Information</u>. (Damages of at least \$1 billion, adjusted for 2022 dollars. Average = 1980-2022.) Chart: Axios Visuals

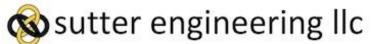
Where is the industry going?

- Sustainability Carbon neutral by 2050
- Because...

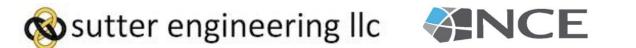
There's something happening here What it is ain't exactly clear

Stephen Stills, Buffalo Springfield, 1966

All theories are good theories – but if you are in the concrete business...


choose wisely...

Your local Holiday Inn...



Your local road...

"Low Carbon" is and will be demand driven

- Many private companies see climate change as a threat to their longterm viability (2035 target – not 2050)
- Major companies are investing in strategies to reduce their carbon footprint now and into the future
 - Companies that have large infrastructure construction programs for warehousing, campuses, and data centers: Meta, Target, Amazon, etc.
- Looking for strategies to reduce the carbon footprint of concrete as part of an overall program

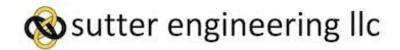
National/State Level Policy Initiatives

- The federal government and many state and local agencies are requesting reduced carbon concrete lower GHG emissions
- In some cases, carbon limits are being set for classes of concrete
 - Tracking carbon footprint of construction materials using environment product declarations (EPDs) has begun
- Several NGO's and other stakeholders are working with elected officials to implement changes in policy to benchmark and reduce GHG emissions

The Path Forward for Concrete Pavements

Less clinker in cement, less cement in concrete, less concrete in construction

- Replace clinker content in cement
 - Use blended cement (ASTM C595) or replace clinker with supplementary cementitious materials (SCMs) at concrete plant
- Use less cementitious materials
 - Optimized aggregate grading
 - Lower cementitious content
- Optimize designs & new mixtures (UHPC)
- Use alternative SCMs and/or alternative cementitious materials
- Why alternative materials?

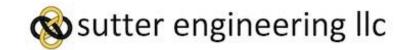

🐼 sutter engineering IIc

Example: UHPC

photo credit: S. Foster

The Path Forward for Concrete Pavements

Less clinker in cement, less cement in concrete, less concrete in construction


- Replace clinker content in cement
 - Use blended cement (ASTM C595) or replace clinker with supplementary cementitious materials (SCMs) at concrete plant
- Use less cementitious materials
 - Optimized aggregate grading
 - Lower cementitious content
- Optimize designs & new mixtures (UHPC)
- Use alternative SCMs and/or alternative cementitious materials
- Why alternative materials?

🐼 sutter engineering IIc

Why Alternative Materials?

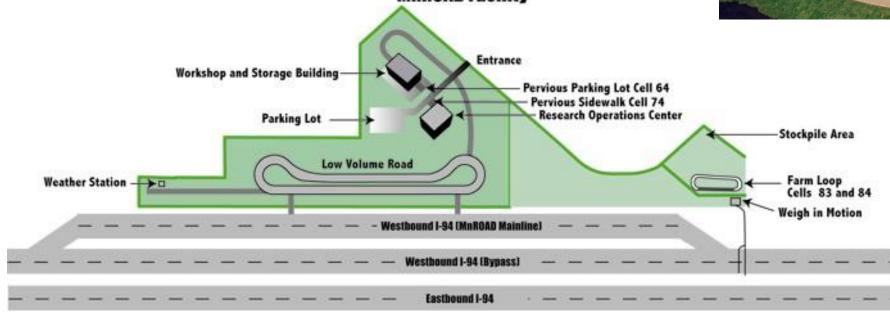
- Not the only solution
- Conventional materials in short supply
 - Fly ash (no more coal power)
 - Slag (no more blast furnaces)
- Performance
- Carbon reduction and sequestration

The Path Forward for Concrete Pavements

The Three C's

Less clinker in cement, less cement in concrete, less concrete in construction

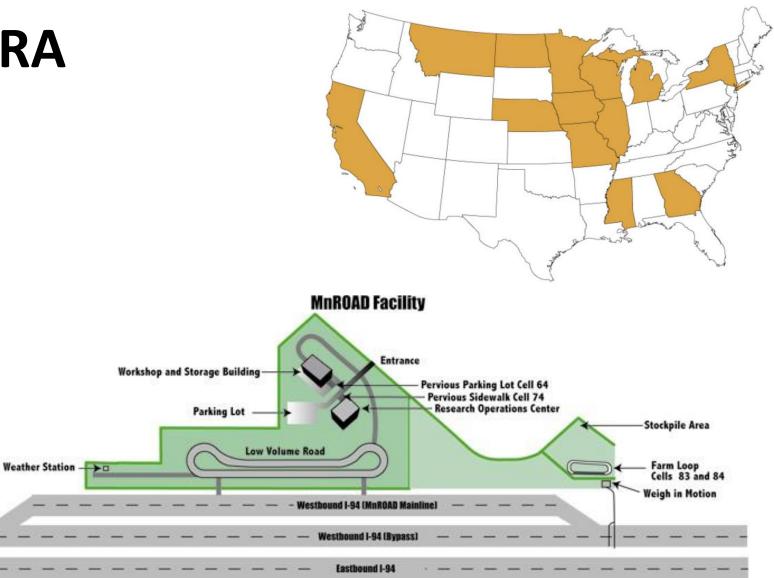
- Replace clinker content in cement
 - Use blended cement (ASTM C595) or replace clinker with supplementary cementitious materials (SCMs) at concrete plant
- Use less cementitious materials
 - Optimized aggregate grading
 - Lower cementitious content
- Optimize designs & new mixture (UHPC)
- Use alternative SCMs and/or a renative cementitious materials
- Why alternative materials?
- All require demonstration. But where? The **RISK** of trying something new...


Sutter engineering llc

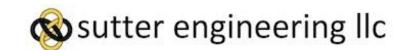
DEPARTMENT OF TRANSPORTATION

This Has Brought Us to MnROAD

Constructed 1990-93


A partnership between Minnesota Department of Transportation and the Minnesota Local Road Research Board

Sutter engineering llc



MnROAD - NRRA

- 3.5 mile of I-94 operated by MnDOT
- Partnership with the National Road Research Alliance (NRRA)
- 11 states, 50 industries, associations, and academia
- Designed to test new technologies in a realworld environment

RANSPORTATION

Project Ramp-Up

- MnDOT contracted with NCE and Sutter Engineering LLC to help structure and execute the experiment
 - Identify materials providers
 - Establish mixture requirements
 - Manage trial batching
 - Coordinate logistics (i.e., herd cats)
 - Structure the testing program to support the desired research

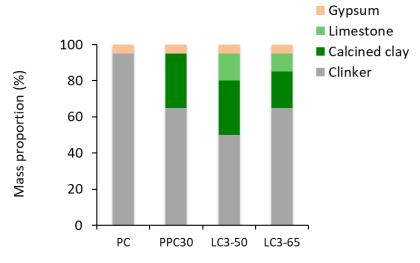


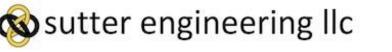
NRRA Research Projects

- Use of Carbon Dioxide for Sustainable and Resilient Concrete Pavements – *Iowa State University*
- Use of Alternative Pozzolanic Materials Towards Reducing Cement Content in Concrete Pavements – *APTech*
- Use of Alternative Cementitious Materials in Concrete Pavements – NCE

Possible Technologies - Alternative SCMs

- Harvested coal ash
 - From landfills and ponds
 - Mix of fly ash and bottom ash
 - Requires processing
- Ground glass pozzolan
 - ASTM C1866
- Manufactured SCMs
 - ASTM is working on standards for alternative SCMs

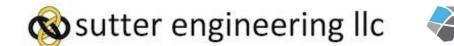




Possible Technologies - Alternative Cements

- Non-traditional blended hydraulic cements
 - LC3 portland cement, ground limestone, calcined clay,
 - High-limestone replacement blended cements
- Alkali-activated <u>hydraulic cements</u>
 - Alkali activator liquid or powder; hydration occurs
 - Precursor containing calcium and alumino-silica minerals
 - e.g., Class C fly ash, slag cement
- Alkali-activated <u>non-hydraulic cements</u> (geopolymers)
 - Alkali-activated non-hydraulic reaction based on low calcium alumino-silica minerals
 - Dissolution and polymerization process

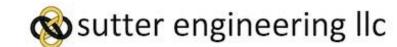
LC³ is a family of cements, the figure refers to the **clinker** content



K. Scrivener, 2020

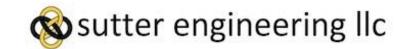
Project Requirements

- General Requirements
 - Portland cement mixtures will use an ASTM C595 Type IL(10) blended cement
 - Mixtures shall meet performance requirements based on AASHTO R 101 Developing Performance Engineered Concrete Pavement Mixtures *(required 500 psi flex @ 28 days, 5-8% air)*
 - Batched and mixed at a central plant and paved using conventional slip-form paving equipment



Final Test Site Construction

- Test cells were constructed at MnROAD to evaluate strategies to reduce GHG emission in concrete paving
- 16 test cells
 - 2 control cells
 - 1 optimized mixture (based on control)
 - 3 CarbonCure[™] cells
 - 7 alternative SCM cells (nominal)
 - 3 alternative cements (nominal)
- Construction completed August 2022



Project Specific Mixtures

- Control Mixtures Standard MnDOT paving mixture
 - 570 pcy total cementitious with 30% Class F fly ash (Coal Creek)
 - Water-to-cementitious materials ratio of 0.40
- Two control mixtures were needed to accommodate carbon mineralization study
 - One control mixture and the three CarbonCure[™] cells will use one set of constituent materials
 - Other control mixture and remaining cells will use another set of constituent materials

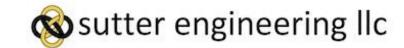
Project Specific Mixtures

- **Optimized Mixture** designed with conventional materials with reduced cementitious materials content
 - Mixture Design by Iowa State University (P. Taylor)
 - Mixture Design 501 pcy total cementitious; 30% Coal Creek Class F

CarbonCure[™]

- One mixture designed by CarbonCure[™] with CO₂ injection 558 pcy total cementitious; 30% Coal Creek Class F
- Same mixture as above without the CO₂ injection
- Control mixture with CO₂ injection

Sutter engineering llc


Project Specific Mixtures - ASCMs

Carbon Upcycling

- Fly ash processed by grinding in a pressurized carbon-rich environment
- Mixture Design 500 pcy total cementitious; 30% treated ash

• Urban Mining

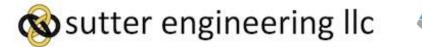
- Ground-glass pozzolan meeting ASTM C1866
- Mixture Design 570 pcy total cementitious; 30% GGP
- TerraCO2
 - Manufactured SCM resembling fly ash
 - Mixture Design 570 pcy total cementitious; 35% manufactured ASCM

Project Specific Mixtures - ASCMs

Carbon Limit

- Proprietary material, ground limestone, natural pozzolan
- Mixture Design 570 pcy total cementitious; 30% ASCM

Hess Pumice

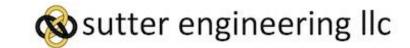

- Pumice-based natural pozzolan meeting ASTM C618
- Mixture Design 570 pcy total cementitious; 30% pozzolan

• 3M

- Baghouse dust from shingle granules; natural pozzolan meeting ASTM C618
- Mixture Design 570 pcy total cementitious; 15% 3M pozz, 15% Portage Station Class F

• Burgess Pigments

- Metakaolin natural pozzolan
- Mixture Design 570 pcy total cementitious; 12% metakaolin, 18% Coal Creek Class F

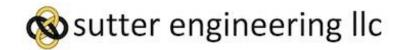

Project Specific Mixtures - ACMs

• Ash Grove – IP(30)

- Thought we were getting LC3 using 50% clinker, 30% calcined clay, 15% limestone
- Mixture Design 570 pcy total cementitious using calcined clay as the pozzolan

Continental Cement – High Limestone Type IL(20)

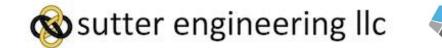
- Blended cement with 20% limestone, 30% Class F ash
- Mixture Design 570 pcy total cementitious
- UltraHigh Materials
 - 0% portland cement clinker-based hydraulic cement (meets ASTM C1157)
 - Mixture Design 650 pcy total cementitious

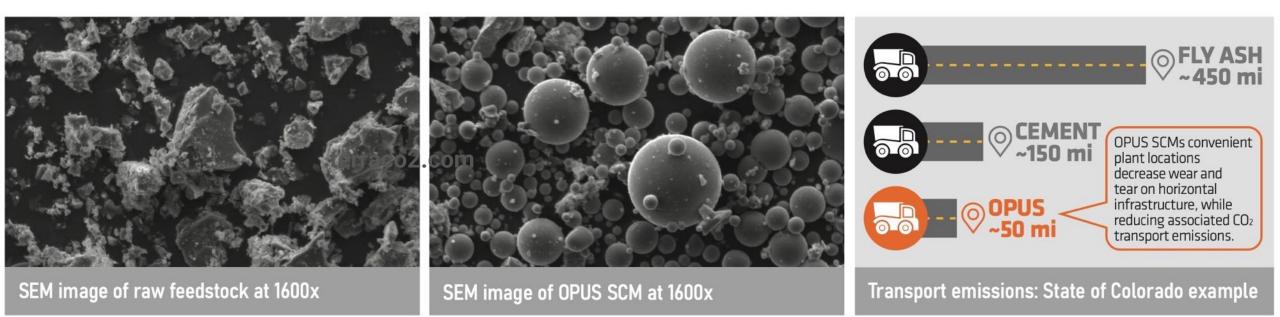


Alternative SCMs - Examples

- Carbon Upcycling
- Patented technology (reactor)
- Ball milling of the material in a CO₂ environment
- Size reduction plus carbonation of components in the ash
- Claim the process works with fly ash, bottom ash, slag, ground glass, natural pozzolans and other natural minerals (e.g., talc)

20 tonne reactor




Alternative SCMs - Examples

- Company: TerraCO2
- Synthetic fly ash
- Taking rock with a composition similar to Class F ash, partially melting, cooling in an air stream to form spherical glass particles
- Composition, structure, morphology, particle size all mimic Class F ash

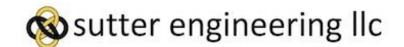
WHAT ARE THE BENEFITS OF HAVING A NEW LOW COST SCM LIKE OPUS SCM?

- 1. OPUS SCM is potentially cheaper than fly ash (depending on haul distance).
- 2. OPUS SCM manufacturing scales to meet increasing demand, unlike coal fly ash.
- 3. OPUS SCM does not use coal energy. Carbon-neutral production will be possible when industrial renewable energy sources become feasible.

OPUS Supplementary Cementitious Material (OPUS SCM):

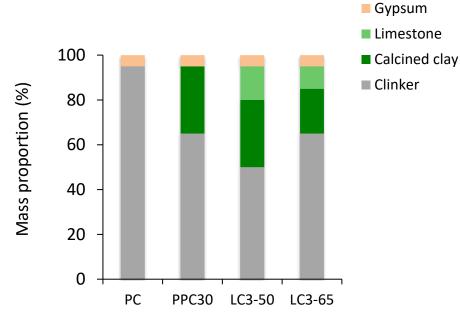

- is classified as a Class N pozzolan
- is an alternative to Class F fly ash
- reduces Portland cement emissions by 8-23% (at 10-30% substitution)

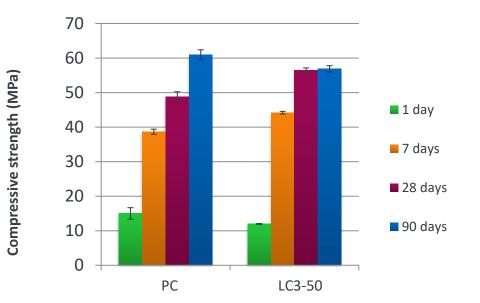
Cement is responsible for ~5 to 7% of global carbon emissions.


Alternative SCMs - Examples

- Company: Carbon Limit
- Non-calcined mineral admixture
- Replaces cement
- Adds a catalyst to increase CO₂ uptake
- Claims to adsorb more CO₂ in hardened state than portland cement concrete

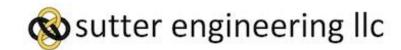
Alternative Cements - Examples


- Company: UltraHigh Materials
- Proprietary blend of materials
- Available as a hydraulic formulation or a geopolymer formulation
- Capable of very high strength concrete, ~25,000 psi compressive



Alternative Cements - Examples

• *LC3*


LC³ is a family of cements, the figure refers to the **clinker** content

- 50% less clinker
- 40% less CO₂
- Similar strength
- Better chloride resistance
- Resistant to alkali silica reaction

ANSPORTATION

K. Scrivener, 2020

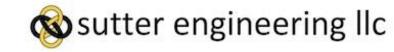
Alternative Cements - Examples

- Company: Continental Cement
- Blended cement with 20% limestone replacement

4. Classification

4.1 This specification applies to the following types of blended cement that generally are intended for use as indicated.

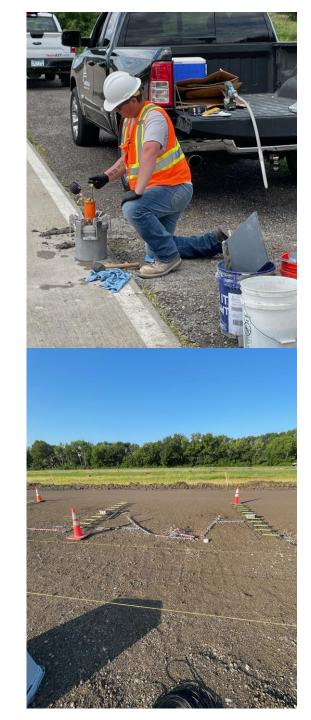
4.1.1 Blended hydraulic cements for general concrete construction.


- 4.1.1.1 Type IS—Portland blast-furnace slag cement.
- 4.1.1.2 *Type IP*—Portland-pozzolan cement.
- 4.1.1.3 *Type IL*—Portland-limestone cement.
- 4.1.1.4 *Type IT*—Ternary blended cement.

Designation: C595/C595M – 21


Standard Specification for Blended Hydraulic Cements¹

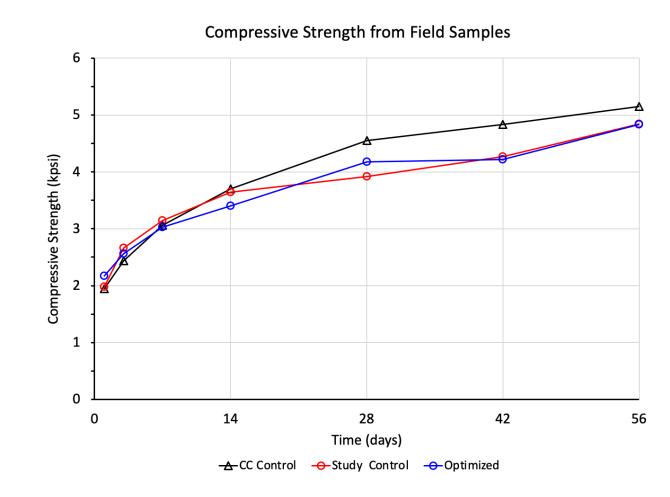
7.1.5 *Portland-limestone Cement*—Portland-limestone cement shall be a hydraulic cement in which the limestone content is more than 5 % but less than or equal to 15 % by mass of the blended cement.

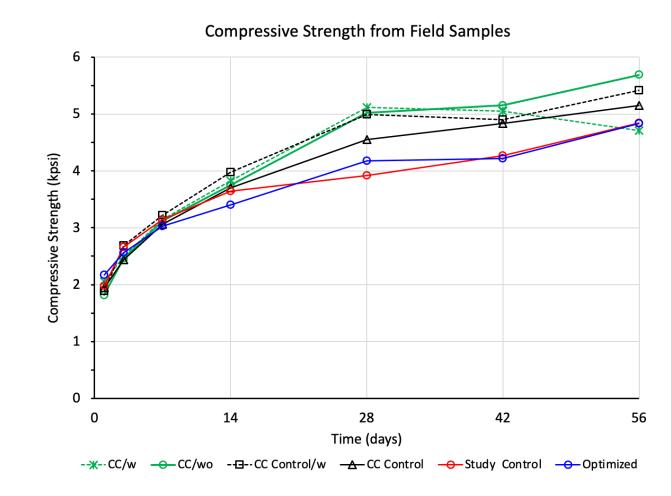


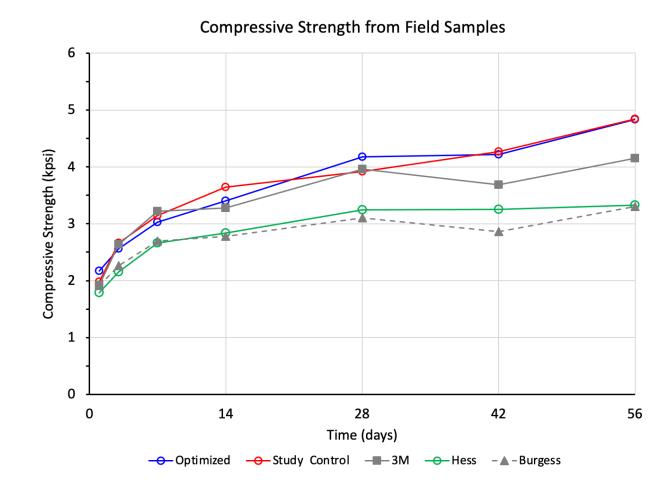
The Research

- Three research teams have been selected by NRRA
- Data from construction obtained by local testing firm and FHWA Mobile Trailer
- Post-construction testing will be performed by local firm and FHWA Turner-Fairbank
- Research teams will monitor pavement performance over 2 years
- Teams will report on performance including LCA

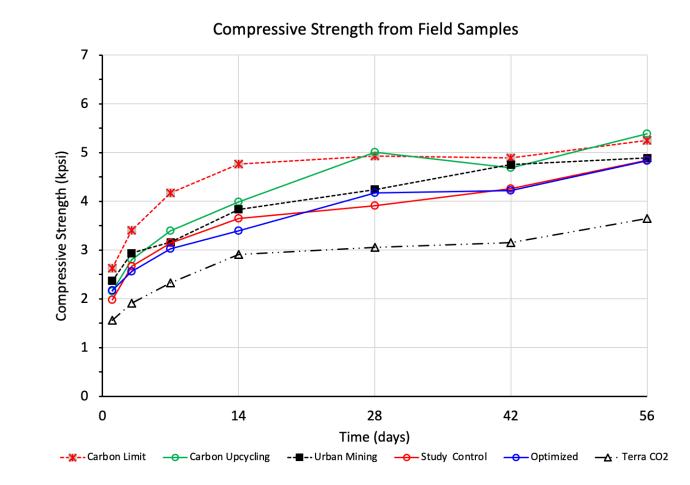
A Note on Environmental Impact

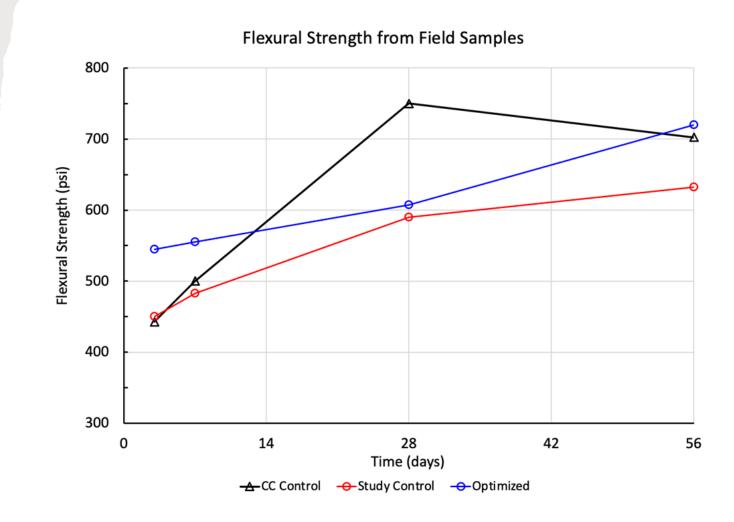

- Environmental Product Declarations (EPDs) are not currently available for many of the alternative materials
 - Would need to use ISO 21930 core PCR to develop EPD
- This will limit ability to assess environmental impact
 - Will gather data, draw boundaries, and do the best we can
- FHWA is working on the LCA Commons to provide the necessary LCI data for EPD development



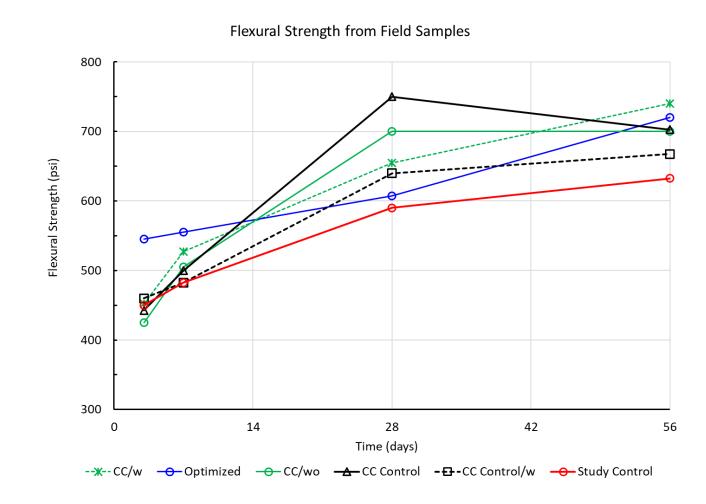

• Control Mixtures

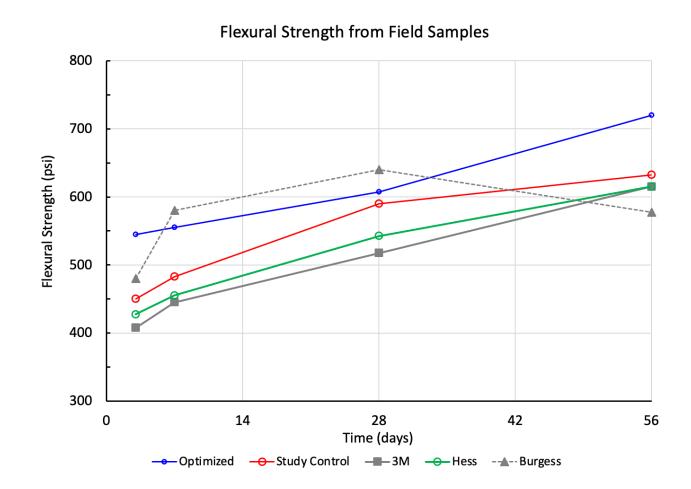
• CarbonCure[™] Mixtures

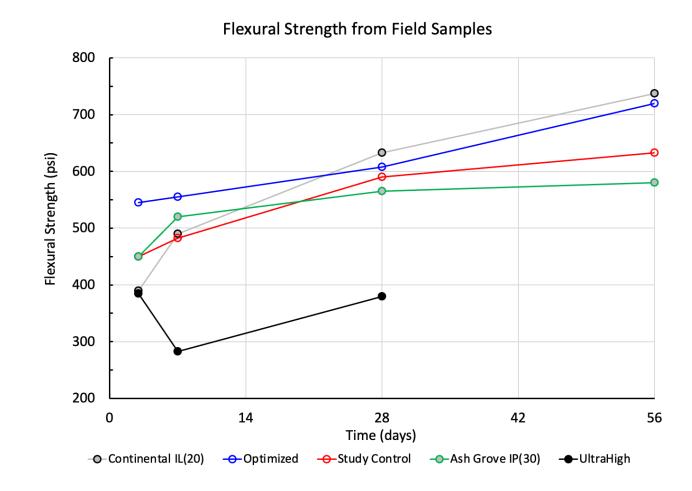

• Natural Pozzolan Mixtures

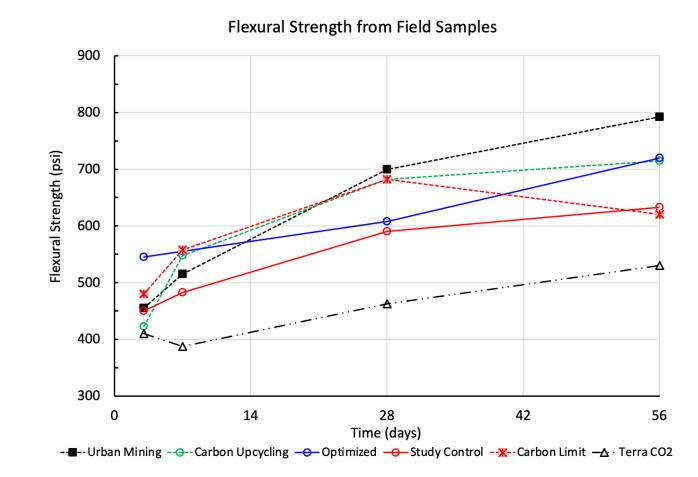

• Other Cements Mixtures

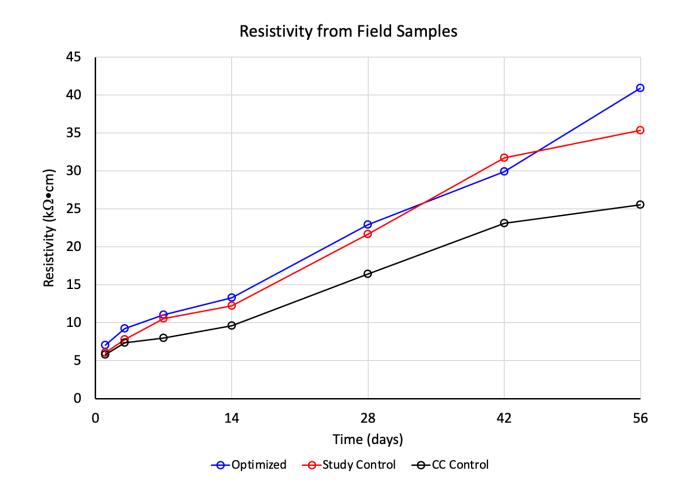
Compressive Strength from Field Samples Compressive Strength (kpsi) Time (days)

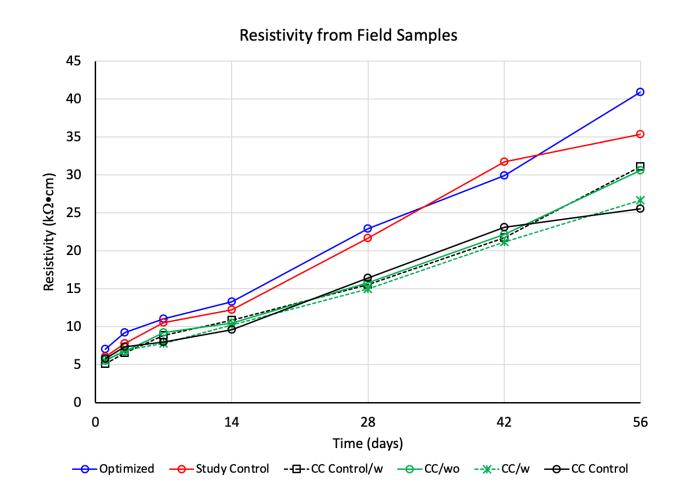

• ASCM Mixtures

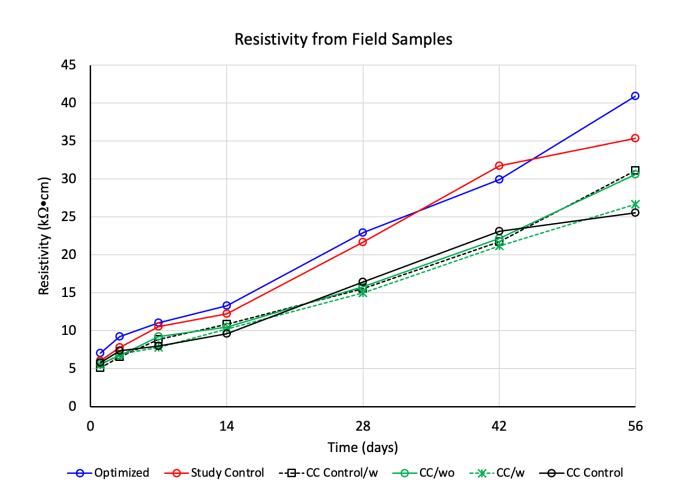

• Control Mixtures

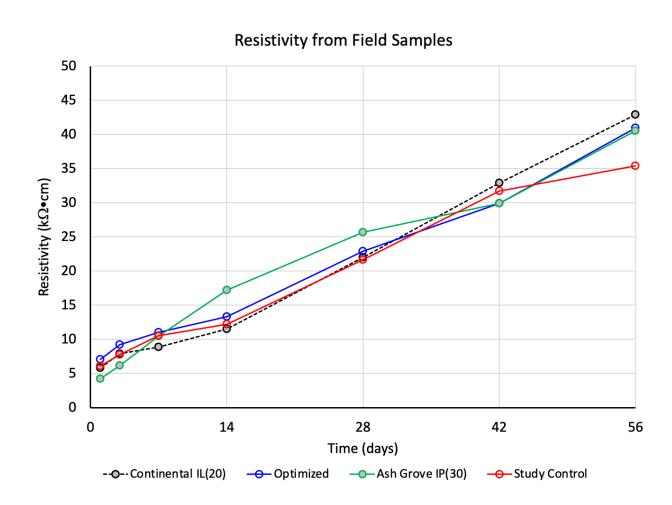

• CarbonCure[™] Mixtures

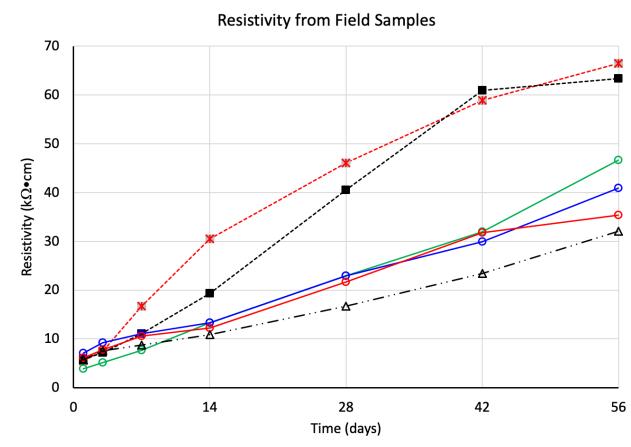

• Natural Pozzolan Mixtures


• Other Cements Mixtures

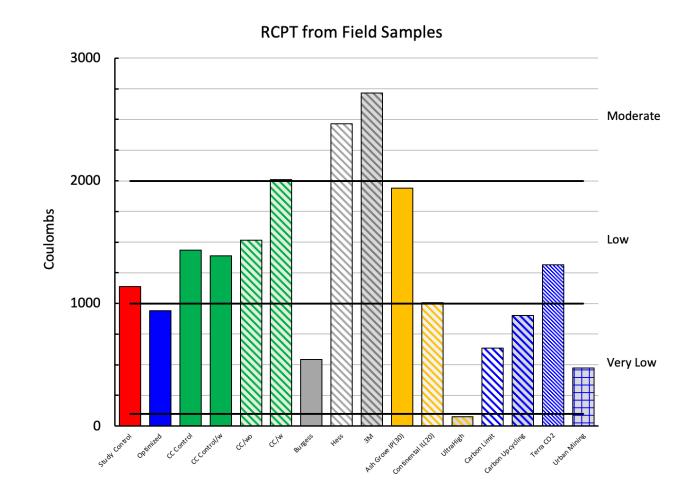

• ASCM Mixtures


• Control Mixtures


• CarbonCure[™] Mixtures


• Natural Pozzolan Mixtures

• Other Cements Mixtures



• ASCM Mixtures

Preliminary Results – RCPT

• All Mixtures

Closing Thoughts

- This MnROAD demonstration project is a critical step towards a transition to new materials for road and infrastructure construction
- Strong support from FHWA, MnDOT, and industry
- After construction is completed, performance will be monitored for three years under a separate contracts Stay tuned!
- Preliminary results show good to excellent performance
- Notable: IL(20), Carbon Upcycling, Carbon Limit

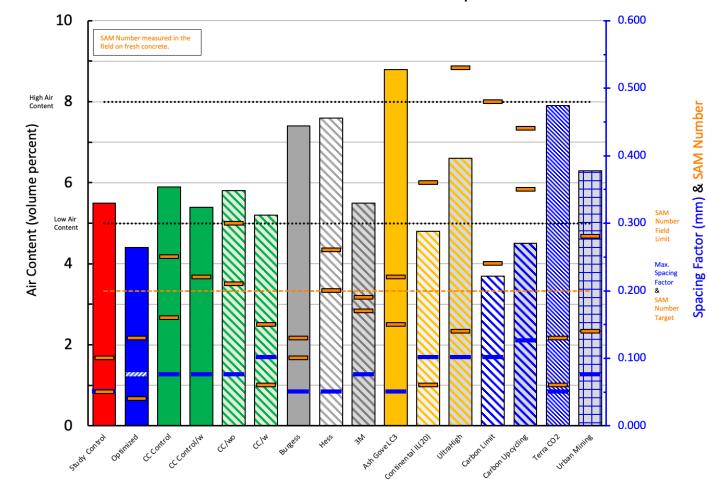
Questions?

llsutter@mtu.edu

or

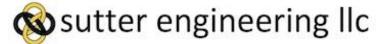
sutter.engineering@gmail.com

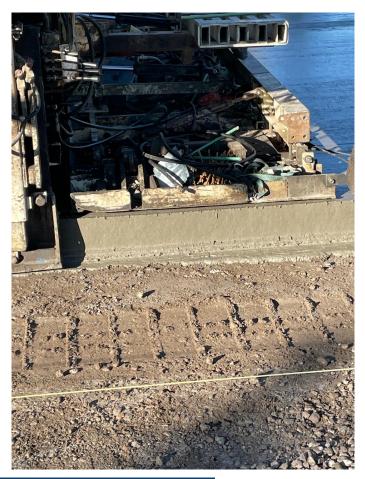
がなられ


periculosum est tempus indoctus

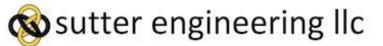
All Mixtures

Preliminary Results – Air– Void System


Hardened Air from Field Samples



- Carbon Upcycling
- Lowest total cementitious
- 500 pcy with 30% fly ash replacement

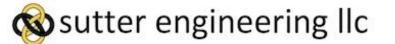


- GGP
- Batch plant left out the admixture package

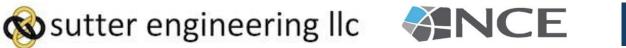
DEPARTMENT OF TRANSPORTATION

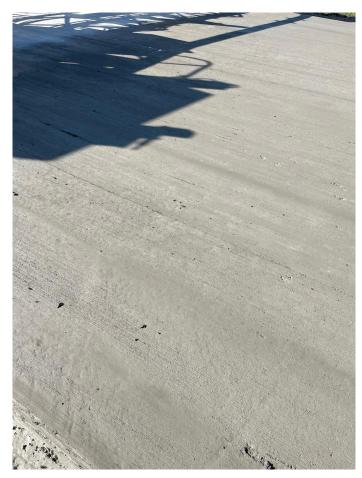


- Metakaolin
- Extremely high water demand.
- Should have been blended with the fly ash but was added separately into the truck



- Metakaolin
- High water demand.
- Should have been blended with the fly ash but was added separately into the truck


• Once dialed in it paved well


- Carbon Limit
- Catalyst + Limestone + Natural Pozzolan

• Dialed in (25 gal water added)

• No Texture

